Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629612

RESUMEN

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Asunto(s)
Miosinas , Células Vegetales , Miosinas/metabolismo , Células Vegetales/metabolismo , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Desarrollo de la Planta/fisiología
2.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
3.
Plant Cell ; 36(5): 1655-1672, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242840

RESUMEN

SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Bryopsida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Transducción de Señal , Filogenia , Lactonas/metabolismo
5.
Plant Cell Environ ; 45(1): 220-235, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564869

RESUMEN

Plant viruses are important pathogens able to overcome plant defense mechanisms using their viral suppressors of RNA silencing (VSR). Small RNA pathways of bryophytes and vascular plants have significant similarities, but little is known about how viruses interact with mosses. This study elucidated the responses of Physcomitrella patens to two different VSRs. We transformed P. patens plants to express VSR P19 from tomato bushy stunt virus and VSR 2b from cucumber mosaic virus, respectively. RNA sequencing and quantitative PCR were used to detect the effects of VSRs on gene expression. Small RNA (sRNA) sequencing was used to estimate the influences of VSRs on the sRNA pool of P. patens. Expression of either VSR-encoding gene caused developmental disorders in P. patens. The transcripts of four different transcription factors (AP2/erf, EREB-11 and two MYBs) accumulated in the P19 lines. sRNA sequencing revealed that VSR P19 significantly changed the microRNA pool in P. patens. Our results suggest that VSR P19 is functional in P. patens and affects the abundance of specific microRNAs interfering with gene expression. The results open new opportunities for using Physcomitrella as an alternative system to study plant-virus interactions.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/virología , Interacciones Huésped-Patógeno/genética , Cucumovirus/genética , Cucumovirus/patogenicidad , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , MicroARNs , Proteínas de Plantas/genética , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Plantas Modificadas Genéticamente , Interferencia de ARN , Tombusvirus/genética , Tombusvirus/patogenicidad , Factores de Transcripción/genética
6.
Plant Cell ; 34(1): 228-246, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34459922

RESUMEN

Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.


Asunto(s)
Evolución Biológica , Bryopsida/fisiología , Polaridad Celular , Ácidos Indolacéticos/metabolismo , Marchantia/fisiología , Células Vegetales/fisiología , Transporte Biológico , Bryopsida/crecimiento & desarrollo , Biología Celular , División Celular , Aumento de la Célula , Biología Evolutiva , Marchantia/crecimiento & desarrollo , Organogénesis de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo
7.
Plant Sci ; 313: 111070, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763863

RESUMEN

R-loops, consisting of a DNA:RNA hybrid and a single-stranded DNA (ssDNA), form naturally as functional chromosome structures and are crucial in many vital biological processes. However, disrupted R-loop homeostasis will threat to the integrity and stability of genome. As the endonuclease, RNase H1 can efficiently recognize and remove excess R-loops to protect organisms from DNA damage induced by R-loop over-accumulation. Here, we investigated the function of RNase H1 in Physcomitrium (Physcomitrella) patens to illustrate its important role in the evolution of plants. We found that PpRNH1A dysfunction seriously affected shoot growth and branch formation in P. patens, revealing a noticeable functional difference between PpRNH1A and AtRNH1A of Arabidopsis. Furthermore, auxin signaling was significantly affected at the transcriptional level in PpRNH1A mutant plants, as a result of the accumulation of R-loops at several auxin-related genes. This study provides evidence that PpRNH1A regulates the development of P. patens by controlling R-loop formation at specific loci to modulate the transcription of auxin-related genes. It also highlights the interspecific functional differences between early land plants and vascular plants, despite crucial and conserved role of RNase H1 played in maintaining R-loop homeostasis.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Diferenciación Celular/genética , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/genética , Ribonucleasa H/genética , Diferenciación Celular/fisiología
8.
Science ; 373(6554): 586-590, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34326243

RESUMEN

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bryopsida/metabolismo , Canales Iónicos/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Calcio/metabolismo , Señalización del Calcio , Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Canales Iónicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Vacuolas/metabolismo
9.
Plant Signal Behav ; 16(10): 1943921, 2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34159883

RESUMEN

As an adaptive innovation in plant terrestrialization, cuticle covers the plant surface and greatly contributes to the development and stress tolerance in land plants. Although past decades have seen great progress in understanding the molecular mechanism of cuticle biosynthesis in flowering plants with the contribution of cuticle biosynthesis mutants and advanced cuticle composition profiling techniques, origins and evolution of cuticle biosynthesis are poorly understood. Recent chemical, phylogenomic, and molecular genetic studies on cuticle biosynthesis in early-diverging extant land plant lineages, the bryophytes, shed novel light on the origins and evolution of plant cuticle biosynthesis. In this mini-review, we highlighted these recent advances in the molecular biology of cuticle biosynthesis in bryophytes, and provided evolutionary insights into plant cuticle biosynthesis.


Asunto(s)
Briófitas/crecimiento & desarrollo , Evolución Molecular , Epidermis de la Planta/crecimiento & desarrollo , Briófitas/genética , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Epidermis de la Planta/metabolismo
10.
Methods Mol Biol ; 2309: 143-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028685

RESUMEN

As a bryophyte and model plant, the moss Physcomitrium (Physcomitrella) patens (P. patens) is particularly well adapted to hormone evolution studies. Gene targeting through homologous recombination or CRISPR-Cas9 system, genome sequencing, and numerous transcriptomic datasets has allowed for molecular genetics studies and much progress in Evo-Devo knowledge. As to strigolactones, like for other hormones, both phenotypical and transcriptional responses can be studied, in both WT and mutant plants. However, as in any plant species, medium- to large-scale phenotype characterization is necessary, owing to the general high phenotypic variability. Therefore, many biological replicates are required. This may translate to large amount of the investigated compounds, particularly expensive (or difficult to synthesize) in the case of strigolactones. These issues prompted us to improve existing methods to limit the use of scarce/expensive compounds, as well as to simplify subsequent measures/sampling of P. patens. We hence scaled up well-tried experiments, in order to increment the number of tested genotypes in one given experiment.In this chapter, we will describe three methods we set up to study the response to strigolactones and related compounds in P. patens.


Asunto(s)
Bioensayo , Bryopsida/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Tiempo
11.
Methods Mol Biol ; 2317: 321-331, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028779

RESUMEN

The moss Physcomitrium (Physcomitrella) patens performs efficient homologous recombination in both the nucleus and plastid enabling the study of individual gene function by generating precise inactivation or modification of genes. Polyethylene glycol (PEG)-mediated transformation of protoplasts is routinely used to study the nuclear gene function of P. patens. PEG-mediated protoplast transformation is also applied for plastid transformation of this moss. The efficiency of plastid transformation is quite reliable and one or two homoplasmic transplastomic lines are obtained in a plastid transformation experiment (5 × 105 protoplasts) by selection for spectinomycin resistance.


Asunto(s)
Bryopsida/genética , Ingeniería Genética/métodos , Plantas Modificadas Genéticamente/genética , Plastidios/genética , Transformación Genética , Bryopsida/crecimiento & desarrollo , Recombinación Homóloga , Plantas Modificadas Genéticamente/crecimiento & desarrollo
12.
Plant Mol Biol ; 107(4-5): 279-291, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33852087

RESUMEN

Plants have evolved and grown under the selection pressure of gravitational force at 1 g on Earth. In response to this selection pressure, plants have acquired gravitropism to sense gravity and change their growth direction. In addition, plants also adjust their morphogenesis in response to different gravitational forces in a phenomenon known as gravity resistance. However, the gravity resistance phenomenon in plants is poorly understood due to the prevalence of 1 g gravitational force on Earth: not only it is difficult to culture plants at gravity > 1 g(hypergravity) for a long period of time but it is also impossible to create a < 1 genvironment (µg, micro g) on Earth without specialized facilities. Despite these technical challenges, it is important to understand how plants grow in different gravity conditions in order to understand land plant adaptation to the 1 g environment or for outer space exploration. To address this, we have developed a centrifugal device for a prolonged duration of plant culture in hypergravity conditions, and a project to grow plants under the µg environment in the International Space Station is also underway. Our plant material of choice is Physcomitrium (Physcomitrella) patens, one of the pioneer plants on land and a model bryophyte often used in plant biology. In this review, we summarize our latest findings regarding P. patens growth response to hypergravity, with reference to our on-going "Space moss" project. In our ground-based hypergravity experiments, we analyzed the morphological and physiological changes and found unexpected increments of chloroplast size and photosynthesis rate, which might underlie the enhancement of growth and increase in the number of gametophores and rhizoids. We further discussed our approaches at the cellular level and compare the gravity resistance in mosses and that in angiosperms. Finally, we highlight the advantages and perspectives from the space experiments and conclude that research with bryophytes is beneficial to comprehensively and precisely understand gravitational responses in plants.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Gravitación , Hipergravedad , Meristema/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Vuelo Espacial/métodos , Bryopsida/citología , Bryopsida/metabolismo , División Celular/fisiología , Citoesqueleto/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Biológicos , Fotosíntesis/fisiología , Brotes de la Planta/citología , Brotes de la Planta/metabolismo
13.
PLoS One ; 16(4): e0249637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33831039

RESUMEN

Plant pathogens often exploit a whole range of effectors to facilitate infection. The RXLR effector AVR1 produced by the oomycete plant pathogen Phytophthora infestans suppresses host defense by targeting Sec5. Sec5 is a subunit of the exocyst, a protein complex that is important for mediating polarized exocytosis during plant development and defense against pathogens. The mechanism by which AVR1 manipulates Sec5 functioning is unknown. In this study, we analyzed the effect of AVR1 on Sec5 localization and functioning in the moss Physcomitrium patens. P. patens has four Sec5 homologs. Two (PpSec5b and PpSec5d) were found to interact with AVR1 in yeast-two-hybrid assays while none of the four showed a positive interaction with AVR1ΔT, a truncated version of AVR1. In P. patens lines carrying ß-estradiol inducible AVR1 or AVR1ΔT transgenes, expression of AVR1 or AVR1ΔT caused defects in the development of caulonemal protonema cells and abnormal morphology of chloronema cells. Similar phenotypes were observed in Sec5- or Sec6-silenced P. patens lines, suggesting that both AVR1 and AVR1ΔT affect exocyst functioning in P. patens. With respect to Sec5 localization we found no differences between ß-estradiol-treated and untreated transgenic AVR1 lines. Sec5 localizes at the plasma membrane in growing caulonema cells, also during pathogen attack, and its subcellular localization is the same, with or without AVR1 in the vicinity.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Factores de Virulencia/metabolismo , Bryopsida/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Factores de Virulencia/genética
14.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807788

RESUMEN

Development in multicellular organisms relies on cell proliferation and specialization. In plants, both these processes critically depend on the spatial organization of cells within a tissue. Owing to an absence of significant cellular migration, the relative position of plant cells is virtually made permanent at the moment of division. Therefore, in numerous plant developmental contexts, the (divergent) developmental trajectories of daughter cells are dependent on division plane positioning in the parental cell. Prior to and throughout division, specific cellular processes inform, establish and execute division plane control. For studying these facets of division plane control, the moss Physcomitrium (Physcomitrella) patens has emerged as a suitable model system. Developmental progression in this organism starts out simple and transitions towards a body plan with a three-dimensional structure. The transition is accompanied by a series of divisions where cell fate transitions and division plane positioning go hand in hand. These divisions are experimentally highly tractable and accessible. In this review, we will highlight recently uncovered mechanisms, including polarity protein complexes and cytoskeletal structures, and transcriptional regulators, that are required for 1D to 3D body plan formation.


Asunto(s)
Bryopsida , División Celular/fisiología , Células Vegetales/metabolismo , Desarrollo de la Planta/fisiología , Bryopsida/citología , Bryopsida/crecimiento & desarrollo
15.
Plant Mol Biol ; 107(4-5): 293-305, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33598827

RESUMEN

KEY MESSAGE: This study focused on the key regulatory function of Physcomitrium patens GRAS12 gene underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life. The miR171-GRAS module has been identified as a key player in meristem maintenance in angiosperms. PpGRAS12 is a member of the GRAS family and a validated target for miR171 in Physcomitrium (Physcomitrella) patens. Here we show a regulatory function of miR171 at the gametophytic vegetative growth stage and targeted deletion of the PpGRAS12 gene adversely affects sporophyte production since fewer sporophytes were produced in ΔPpGRAS12 knockout lines compared to wild type moss. Furthermore, highly specific and distinct growth arrests were observed in inducible PpGRAS12 overexpression lines at the protonema stage. Prominent phenotypic aberrations including the formation of multiple apical meristems at the gametophytic vegetative stage in response to elevated PpGRAS12 transcript levels were discovered via scanning electron microscopy. The production of multiple buds in the PpGRAS12 overexpression lines similar to ΔPpCLV1a/1b disruption mutants is accompanied by an upregulation of PpCLE and downregulation of PpCLV1, PpAPB, PpNOG1, PpDEK1, PpRPK2 suggesting that PpGRAS12 acts upstream of these genes and negatively regulates the proposed pathway to specify simplex meristem formation. As CLV signaling pathway components are not present in the chlorophytic or charophytic algae and arose with the earliest land plants, we identified a key regulatory function of PpGRAS12 underlying an increasing plant complexity, an important step in plant terrestrialization and the evolutionary history of life.


Asunto(s)
Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Proteínas de Plantas/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , MicroARNs/genética , MicroARNs/metabolismo , Microscopía Electrónica de Rastreo , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
16.
Plant J ; 106(3): 831-843, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33599020

RESUMEN

Spatially directed cell division and expansion is important for plant growth and morphogenesis and relies on cooperation between the cytoskeleton and the secretory pathway. The phylogenetically conserved octameric complex exocyst mediates exocytotic vesicle tethering at the plasma membrane. Unlike other exocyst subunits of land plants, the core exocyst subunit SEC6 exists as a single paralog in Physcomitrium patens and Arabidopsis thaliana genomes. Arabidopsis SEC6 (AtSEC6) loss-of-function (LOF) mutation causes male gametophytic lethality. Our attempts to inactivate the P. patens SEC6 gene, PpSEC6, using targeted gene replacement produced two independent partial LOF ('weak allele') mutants via perturbation of the PpSEC6 gene locus. These mutants exhibited the same pleiotropic developmental defects: protonema with dominant chloronema stage; diminished caulonemal filament elongation rate; and failure in post-initiation gametophore development. Mutant gametophore buds, mostly initiated from chloronema cells, exhibited disordered cell file organization and cross-wall perforations, resulting in arrested development at the eight- to 10-cell stage. Complementation of both sec6 moss mutant lines by both PpSEC6 and AtSEC6 cDNA rescued gametophore development, including sexual organ differentiation. However, regular sporophyte formation and viable spore production were recovered only by the expression of PpSEC6, whereas the AtSEC6 complementants were only rarely fertile, indicating moss-specific SEC6 functions.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Exocitosis , Proteínas de Plantas/fisiología , Bryopsida/genética , Exocitosis/genética , Genes de Plantas/genética , Células Germinativas de las Plantas , Mutación , Proteínas de Plantas/genética
17.
Plant Mol Biol ; 107(4-5): 213-225, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33609252

RESUMEN

KEY MESSAGE: This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution of plant stem cells. The establishment and maintenance of pluripotent stem cells in the shoot apical meristem (SAM) are key developmental processes in land plants including the most basal, bryophytes. Bryophytes, such as Physcomitrium (Physcomitrella) patens and Marchantia polymorpha, are emerging as attractive model species to study the conserved features and evolutionary processes in the mechanisms controlling stem cells. Recent studies using these model bryophyte species have started to uncover the similarities and differences in stem cell regulation between bryophytes and angiosperms. In this review, we summarize findings on stem cell function and its regulation focusing on different aspects including hormonal, genetic, and epigenetic control. Stem cell regulation through auxin, cytokinin, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling and chromatin modification by Polycomb Repressive Complex 2 (PRC2) and PRC1 is well conserved. Several transcription factors crucial for SAM regulation in angiosperms are not involved in the regulation of the SAM in mosses, but similarities also exist. These findings provide insights into the evolutionary trajectory of the SAM and the fundamental mechanisms involved in stem cell regulation that are conserved across land plants.


Asunto(s)
Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Brotes de la Planta/genética , Células Madre/metabolismo , Bryopsida/citología , Bryopsida/crecimiento & desarrollo , División Celular/efectos de los fármacos , División Celular/genética , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Brotes de la Planta/citología , Brotes de la Planta/crecimiento & desarrollo , Células Madre/citología , Células Madre/efectos de los fármacos
18.
New Phytol ; 229(4): 1924-1936, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098085

RESUMEN

The fundamental process of polarised exocytosis requires the interconnected activity of molecular motors trafficking vesicular cargo within a dynamic cytoskeletal network. In plants, few mechanistic details are known about how molecular motors, such as myosin XI, associate with their secretory cargo to support the ubiquitous processes of polarised growth and cell division. Live-cell imaging coupled with targeted gene knockouts and a high-throughput RNAi assay enabled the first characterisation of the loss of Rab-E function. Yeast two-hybrid and subsequent in silico structural prediction uncovered a specific interaction between Rab-E and myosin XI that is conserved between P. patens and A. thaliana. Rab-E co-localises with myosin XI at sites of active exocytosis, and at the growing tip both proteins are spatiotemporally coupled. Rab-E is required for normal plant growth in P. patens and the rab-E and myosin XI phenotypes are rescued by A. thaliana's Rab-E1c and myosin XI-K/E, respectively. Both PpMyoXI and AtMyoXI-K interact with PpRabE14, and the interaction is specifically mediated by PpMyoXI residue V1422. This interaction is required for polarised growth. Our results suggest that the interaction of Rab-E and myosin XI is a conserved feature of polarised growth in plants.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Exocitosis , Miosinas , Proteínas de Plantas , División Celular , Proliferación Celular , Técnicas del Sistema de Dos Híbridos
19.
Plant Mol Biol ; 107(4-5): 417-429, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33128724

RESUMEN

KEY MESSAGE: Moss PPR-SMR protein PpPPR_64 is a pTAC2 homolog but is functionally distinct from pTAC2. PpPPR_64 is required for psaA gene expression and its function may have evolved in mosses. The pentatricopeptide repeat (PPR) proteins are key regulatory factors responsible for the control of plant organellar gene expression. A small subset of PPR proteins possess a C-terminal small MutS-related (SMR) domain and have diverse roles in plant organellar biogenesis. However, the function of PPR-SMR proteins is not fully understood. Here, we report the function of PPR-SMR protein PpPPR_64 in the moss Physcomitrium patens. Phylogenetic analysis indicated that PpPPR_64 belongs to the same clade as the Arabidopsis PPR-SMR protein pTAC2. PpPPR_64 knockout (KO) mutants grew autotrophically but with reduced protonemata growth and the poor formation of photosystems' antenna complexes. Quantitative reverse transcription-polymerase chain reaction and RNA gel blot hybridization analyses revealed a significant reduction in transcript levels of the psaA-psaB-rps14 gene cluster but no alteration to transcript levels of most photosynthesis- and non-photosynthesis-related genes. In addition, RNA processing of 23S-4.5S rRNA precursor was impaired in the PpPPR_64 KO mutants. This suggests that PpPPR_64 is specifically involved in the expression level of the psaA-psaB-rps14 gene and in processing of the 23S-4.5S rRNA precursor. Our results indicate that PpPPR_64 is functionally distinct from pTAC2 and is a novel PPR-SMR protein required for proper chloroplast biogenesis in P. patens.


Asunto(s)
Bryopsida/genética , Cloroplastos/genética , Familia de Multigenes , Proteínas de Plantas/genética , Precursores del ARN/genética , ARN Bacteriano/genética , ARN Ribosómico 23S/genética , Proteínas Ribosómicas/genética , Sitios de Unión/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN de Planta/genética
20.
Plant Cell Physiol ; 61(11): 1861-1868, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33057650

RESUMEN

Plants synthesize gibberellin (GA), a diterpenoid hormone, via ent-kaurenoic acid (KA) oxidation. GA has not been detected in the moss Physcomitrium patens despite its ability to synthesize KA. It was recently shown that a KA metabolite, 3OH-KA, was identified as an active regulator of protonema differentiation in P. patens. An inactive KA metabolite, 2OH-KA, was also identified in the moss, as was KA2ox, which is responsible for converting KA to 2OH-KA. In this review, we mainly discuss the GA biosynthetic gene homologs identified and characterized in bryophytes. We show the similarities and differences between the OH-KA control of moss and GA control of flowering plants. We also discuss using recent genomic studies; mosses do not contain KAO, even though other bryophytes do. This absence of KAO in mosses corresponds to the presence of KA2ox, which is absent in other vascular plants. Thus, given that 2OH-KA and 3OH-KA were isolated from ferns and flowering plants, respectively, vascular plants may have evolved from ancestral bryophytes that originally produced 3OH-KA and GA.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Diterpenos/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/fisiología , Evolución Biológica , Bryopsida/metabolismo , Bryopsida/fisiología , Diterpenos de Tipo Kaurano/metabolismo , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...